Existance theorem and minimal cardinality of UEP framelets and MEP bi-framelets
نویسندگان
چکیده
Based on multiresolution analysis (MRA) structures combined with the unitary extension principle (UEP), many frame wavelets were constructed, which are called UEP framelets. The aim of this letter is to derive general properties of UEP framelets based on the spectrum of the center space of the underlying MRA structures. We first give the existence theorem, that is, we give a necessary and sufficient condition that an MRA structure can derive UEP framelets. Second, we present a split trick that each mother function can be split into several functions such that the set consisting of these functions is still a UEP framelet. Third, we determine the minimal cardinality of UEP framelets. Finally, we directly construct UEP framelets with the minimal cardinality. Based on a pair of multiresolution analysis (MRA) structures, when their spectra intersect, we can always construct a pair of dual frame wavelets using mixed extension principle (MEP). This pair of dual frame wavelets are called a pair of MEP bi-framelets. We also give the split trick and find out the minimal cardinality of such MEP bi-framelets.
منابع مشابه
A Family of Nonseparable Scaling Functions and Compactly Supported Tight Framelets
Given integers b and d, with d > 1 and |b| > 1, we construct even nonseparable compactly supported refinable functions with dilation factor b that generate multiresolution analyses on L2(R). These refinable functions are nonseparable, in the sense that they cannot be expressed as the product of two functions defined on lower dimensions. We use these scaling functions and a slight generalization...
متن کاملA Family of Nonseparable Scaling Functions and Smooth Compactly Supported Tight Framelets
Given integers b and d, with d > 1 and |b| > 1, we construct smooth nonseparable compactly supported refinable functions with dilation factor b that generate multiresolution analyses on L2(R). These refinable functions are nonseparable, in the sense that they cannot be expressed as the product of two functions defined on lower dimensions. We use these scaling functions and a slight generalizati...
متن کاملCompactly Supported Tensor Product Complex Tight Framelets with Directionality
Although tensor product real-valued wavelets have been successfully applied to many high-dimensional problems, they can only capture well edge singularities along the coordinate axis directions. As an alternative and improvement of tensor product real-valued wavelets and dual tree complex wavelet transform, recently tensor product complex tight framelets with increasing directionality have been...
متن کاملThe Projection Method for Multidimensional Framelet and Wavelet Analysis
The projection method is a simple way of constructing functions and filters by integrating multidimensional functions and filters along parallel superplanes in the space domain. Equivalently expressed in the frequency domain, the projection method constructs a new function by simply taking a cross-section of the Fourier transform of a multidimensional function. The projection method is linked t...
متن کاملHomogeneous Wavelets and Framelets with the Refinable Structure
Homogeneous wavelets and framelets have been extensively investigated in the classical theory of wavelets and they are often constructed from refinable functions via the multiresolution analysis. On the other hand, nonhomogeneous wavelets and framelets enjoy many desirable theoretical properties and are often intrinsically linked to the refinable structure and multiresolution analysis. In this ...
متن کامل